博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
三元表达式、列表解析、生成器
阅读量:5248 次
发布时间:2019-06-14

本文共 4889 字,大约阅读时间需要 16 分钟。

一、三元表达式

格式:result=值1 if x<y else 值2    

满足if条件result=值1,否则result=值2

>>> 3 if 3>2 else 103>>> 3 if 3>4 else 1010>>> 3+2 if 3>0 else 3-15>>> 3+2 if 3>0 and 3>4 else 3-12

二、列表解析

1 s='hello'2 res=[i.upper() for i in s]3 print(res)4 5 ['H','E','L','L','O']
l=[1,31,73,84,57,22]l_new=[]#一般写法for i in l:    if i > 50:        l_new.append(i)print(l_new)#解析式写法res=[i for i in l if i > 50]print(res)
for i in obj1:    if 条件1:        for i in obj2:            if 条件2:                for i in obj3:                    if 条件3:                        ...l=[1,31,73,84,57,22]print([i for i in l if i > 50])print([i for i in l if i < 50])print([i for i in l if i > 20 and i < 50])

三、生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]>>> L[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]>>> g = (x * x for x in range(10))>>> g
at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)0>>> next(g)1>>> next(g)4>>> next(g)9>>> next(g)16>>> next(g)25>>> next(g)36>>> next(g)49>>> next(g)64>>> next(g)81>>> next(g)Traceback (most recent call last):  File "
", line 1, in
StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))>>> for n in g:...     print(n)... 0149162536496481

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):    n, a, b = 0, 0, 1    while n < max:        print(b)        a, b = b, a + b        n = n + 1    return 'done'

注意,赋值语句:

a, b = b, a + b

相当于:

t = (b, a + b) # t是一个tuplea = t[0]b = t[1]

但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:

>>> fib(6)112358'done'

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):    n, a, b = 0, 0, 1    while n < max:        yield b        a, b = b, a + b        n = n + 1    return 'done'

这就是定义generator的另一种方法。

如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator

>>> f = fib(6)>>> f

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。

而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

def odd():    print('step 1')    yield 1    print('step 2')    yield(3)    print('step 3')    yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

>>> o = odd()>>> next(o)step 11>>> next(o)step 23>>> next(o)step 35>>> next(o)Traceback (most recent call last):  File "
", line 1, in
StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):...     print(n)...112358

 

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

>>> g = fib(6)>>> while True:...     try:...         x = next(g)...         print('g:', x)...     except StopIteration as e:...         print('Generator return value:', e.value)...         break...g: 1g: 1g: 2g: 3g: 5g: 8Generator return value: done

 生成器就是迭代器

yield的功能:

1.与return类似,都可以返回值,但不一样的地方在于yield返回多次值,而return只能返回一次值

2.为函数封装好了__iter__和__next__方法,把函数的执行结果做成了迭代器

3.遵循迭代器的取值方式obj.__next__(),触发的函数的执行,函数暂停与再继续的状态都是由yield保存的

d={'a':1,'b':2,'c':3}obj=d.__iter__()while True:    try:        i=obj.__next__()        print(i)    except StopIteration:        break
def foo():    print('first')    yield 1    print('second')    yield 2    print('third')    yield 3    print('fouth')g=foo()for i in g:    print(i)
import timedef countdown(n):    print('start---->')    while n>=0:        yield n        time.sleep(1)        n-=1    print('stop---->')g=countdown(5)for i in g:    print(i)

 动态查看文件最后一行,并过滤显示。

import timedef tail(filepath,encoding='utf-8'):    with open(filepath,encoding=encoding) as f:        f.seek(0,2)        while True:            line=f.readline()            if line:                yield line            else:                time.sleep(0.5)def grep(lines,pattern):    for line in lines:        if pattern in line:            yield lineg1=tail('day9.txt')g2=grep(g1, 'error')g3=grep(g2, '404')for i in g3:    print(i)

转载于:https://www.cnblogs.com/1204guo/p/7051176.html

你可能感兴趣的文章
Android弹出框的学习
查看>>
现代程序设计 作业1
查看>>
在android开发中添加外挂字体
查看>>
Zerver是一个C#开发的Nginx+PHP+Mysql+memcached+redis绿色集成开发环境
查看>>
多线程实现资源共享的问题学习与总结
查看>>
Learning-Python【26】:反射及内置方法
查看>>
torch教程[1]用numpy实现三层全连接神经网络
查看>>
java实现哈弗曼树
查看>>
转:Web 测试的创作与调试技术
查看>>
python学习笔记3-列表
查看>>
程序的静态链接,动态链接和装载 (补充)
查看>>
关于本博客说明
查看>>
线程androidAndroid ConditionVariable的用法
查看>>
stap-prep 需要安装那些内核符号
查看>>
转载:ASP.NET Core 在 JSON 文件中配置依赖注入
查看>>
socket初识
查看>>
磁盘测试工具
查看>>
代码变量、函数命名神奇网站
查看>>
redis cli命令
查看>>
Problem B: 占点游戏
查看>>